THÈSE. Présentée à L UNIVERSITE ESKİŞEHİR OSMANGAZİ. Pour obtenir - PDF

Description
THÈSE Présentée à L UNIVERSITE ESKİŞEHİR OSMANGAZİ Pour obtenir Le grade de Docteur de l Université de Strasbourg et de l Université Eskişehir Osmangazi Discipline : Sciences de la Terre et de l Univers

Please download to get full document.

View again

of 133
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information
Category:

Speeches

Publish on:

Views: 99 | Pages: 133

Extension: PDF | Download: 0

Share
Transcript
THÈSE Présentée à L UNIVERSITE ESKİŞEHİR OSMANGAZİ Pour obtenir Le grade de Docteur de l Université de Strasbourg et de l Université Eskişehir Osmangazi Discipline : Sciences de la Terre et de l Univers Spécialité : géophysique par Cahit Çağlar Yalçıner Investigation of buried objects with Ground Penetrating Radar: Application to archaeoseismology and palaeoseismology in the Buyuk Menderes Graben (Turkey) Soutenue le 13 avril 2009 devant la commission d examen : Directeur de thèse Co Directeur de thèse Co Directeur de thèse Rapporteur interne Rapporteur externe Rapporteur externe Examinateur MEGHRAOUI Mustapha, Université Louis Pasteur, Strasbourg, France ALTUNEL Erhan, Université Eskişehir Osmangazi, Turquie BANO Maksim, Université Louis Pasteur, Strasbourg, France SAILHAC Pascal, Université Louis Pasteur, Strasbourg, France ERGINTAV Semih, TÜBİTAK, Gebze, Turquie CAKIR Ziyadin, Université Technique, Istanbul, Turquie AKYUZ Serdar, Université Technique, Istanbul, Turquie Investigation de la proche surface par le Georadar: Application à l archéosismologie et paléosismologie du graben du Buyuk Menderes (Turquie) Cahit Çağlar Yalçıner THESE DE DOCTORAT Sciences de la Terre Géophysique, Proche Surface Avril 2009 Investigation of buried objects with Ground Penetrating Radar: Application to archaeoseismology and palaeoseismology in the Buyuk Menderes Graben (Turkey). Cahit Çağlar Yalçıner PHD THESIS General Geology April 2009 Gömülü Yapıların Yeraltı Radarı (GPR) Yöntemi ile Araştırılması: Büyük Menderes grabeni nde Paleosismolojik ve Arkeosismolojik Uygulamalar Cahit Çağlar Yalçıner DOKTORA TEZİ Genel Jeoloji Nisan 2009 V SUMMARY Western Anatolia is one of the most active regions in the world and is represented by horsts and grabens faulted on the margins. The subject of this work, the Büyük Menderes graben, is one of the most active structures in the region and extends between the Aegean Sea in the west and the Denizli Basin in the east. Detailed mapping shows that the active faults bounding the northern boundary of the graben were ruptured with surface breaks in historical periods. These ruptures identified in detail during the field studies. Where direct observations were not possible, however, the characteristic features of the faults were identified by using the Ground Penetrating Radar (GPR), one of the shallow geophysical methods. The GPR method works on the basis of recording of the reflections of the electromagnetic waves from the interfaces by a horizontal receiver which were transmitted to the ground with high velocity by using a horizontal antenna. Data collected is filtered to eliminate the environmental and instrumental noise by using computers and then interpreted to determine the buried structures in high resolution and sensitivity. In scope of the investigation, GPR studies were conducted in six different locations (two trenches, three faulted archaeological site and a buried archaeological site). The trace of the fault, width of the fault zone and the amount of the offset of the young units along the fault were determined by the GPR method before the excavation of the trenches. In the archaeological site where the offset remnants of the archaeological objects were observed, the trace of the faults and the width of the deformational zones were determined by the GPR and the amount of offset obtained from GPR profiles were compared with the offset amounts measured on the surface. In order to locate the exact location of the ancient road entering the ancient Nysa town GPR, studies were conducted and a previously unknown temple was discovered. In the trenches which were excavated based on the GPR findings, it was found that the amount of the offset obtained by the GPR method and the actual offset measured on the trench wall were agreeable with each other. Where the offset archaeological structures exist, it was observed that the faults on the GPR profiles correspond to the ruptures on these structures. In Nysa ancient town, the image obtained from GPR was interpreted to belong to a structure rather than the road expected; in fact, the excavations conducted later on revealed a temple which was not known to exist before. Key Words: Ground Penetrating Radar (GPR), Büyük Menderes graben, buried structure, active fault. VI VII ÖZET Batı Anadolu, tektonik açıdan dünyanın en aktif bölgelerinden biridir ve bölgede kenarları aktif normal faylar ile sınırlı horst ve grabenler ile temsil edilir. Bu çalışmanın konusu olan Büyük Menderes grabeni batıda Ege Denizi ile doğuda Denizli Havzası arasında uzanan en önemli aktif yapılardan biridir. Yapılan ayrıntılı haritalama çalışmaları, grabenin kuzey kenarını sınırlayan aktif fayların tarihsel dönemlerde meydana gelen depremlerde yüzey kırıkları oluşturduklarını ortaya koymuştur. Tarihsel depremlere ait yüzey kırıklarının özellikleri ayrıntılı arazi gözlemleri ile belirlenmiştir. Ancak arazide doğrudan gözlem yapmanın mümkün olmadığı yerlerde sığ jeofizik yöntemlerden biri olan Ground Penetrating Radar Yeraltı Radarı (GPR) kullanılarak aktif fayların özellikleri belirlenmeye çalışılmıştır. GPR yöntemi, yatay doğrultuda konumlanan bir anten aracılığıyla yüksek hızda yeraltına gönderilen elektromanyetik dalgaların ara yüzeylerden yansımasının yine yatay doğrultudaki alıcı tarafından kayıt edilmesi prensibi ile çalışmaktadır. Toplanan veriler bilgisayar programları yardımı ile çeşitli filitreler kullanılarak çevresel ve aletsel gürültülerden temizlendikten sonra yorumlanarak gömülü yapılar yüksek çözünürlükte ve hassasiyette belirlenebilmektedir. Çalışma kapsamında toplam altı lokasyonda (iki adet hendek, üç adet faylanmış arkeolojik kalıntı ve bir adet gömülü arkeolojik kalıntı alanında) GPR çalışmaları yapılmıştır. Hendek lokasyonlarında yapılan GPR çalışmalarında aktif fayın yeri, fay zonunun genişliği ve genç birimlerdeki yerdeğiştirme miktarları önceden belirlenmiş ve daha sonra hendekler açılmıştır. Ötelenmiş arkeolojik kalıntılarda fayların kesin yerleri ve deformasyon zonlarının genişliği GPR ile belirlenmiş ve GPR profillerinden elde edilen ötelenme miktarları yüzeydeki ölçümler ile karşılaştırılmıştır. Nysa antik kentine batıdan giren antik yolun yerinin belirlenebilmesi amacıyla yapılan GPR çalışmalarında varlığı bilinmeyen bir tapınak ortaya çıkarılmıştır. Hendek lokasyonlarında GPR sonuçları doğrultusunda yapılan kazılarda, GPR profillerinden elde edilen ötelenme miktarları ile hendek duvarlarında ölçülen ötelenme miktarlarının birbirleri ile uyumlu olduğu görülmektedir. Ötelenmiş arkeolojik yapıların bulunduğu alanlarda, GPR profillerinde görülen fayların kalıntılarda kırılmanın olduğu yerlere karşılık geldiği ortaya konmuştur. Nysa antik kentinde yolun yerinin belirlenmesi amacıyla yapılan GPR çalışmalarında, alınan görüntünün yol değil bir yapıya ait olduğu ileri sürülmüş ve daha sonra yapılan kazılarda önceden varlığı bilinmeyen bir tapınak ortaya çıkarılmıştır. Anahtar Kelimeler: Ground Penetrating Radar (GPR), Büyük Menderes grabeni, gömülü yapı, aktif fay VIII IX RESUME L Anatolie occidentale est une des régions les plus sismiquement actives du monde, comme en attestent les structures actives en horst et graben qui la délimitent. La présente étude est focalisée sur le Fossé de Büyük Menderes, une structure majeure qui s étend de la Mer Egée à l ouest jusqu au Bassin de Denizli à l est. Une cartographie de détail montre que les failles actives qui forment la limite nord du graben ont produit des séismes durant la période historique. Ces ruptures ont été décrites en détail lors de campagnes de terrain. Lorsque l observation directe s est révélée impossible, nous avons eu recours à la prospection géophysique par géoradar. La méthode géoradar s appuie sur l émission active puis l enregistrement d ondes électromagnétiques réfléchies par les différentes interfaces du sous-sol. Les données sont enregistrées puis filtrées afin d éliminer le bruit environnemental et instrumental puis interprétées pour identifier les structures enfouies avec une haute résolution et une grande sensibilité. Dans le cadre de ces travaux, des campagnes d acquisition GPR ont été réalisées sur six sites différents : deux tranchées, trois sites archéologiques affectés par des failles et un site archéologique enterré. En amont de toute campagne d excavation, nous avons ainsi pu déterminer la géométrie de la trace de la faille, la largeur de la zone de faille ainsi que la quantité de déplacement affectant les unités récentes. A l un des sites, des structures archéologiques portent la trace de mouvements récents le long d une faille. La géométrie de la faille tout comme la largeur de la zone de déformation ont été définies, ainsi que le déplacement total qui correspond aux mesures de surface. Les travaux de tranchée, réalisés sur la base des résultats du géoradar, ont révélé des quantités de déplacement co-sismique cumulé très comparables aux quantités déterminées par le géoradar. D autre part, la trace de faille identifiée dans les profiles géoradar correspond bien, en profondeur, à des décalages de structures archéologiques. Ainsi, sur le site de la ville antique de Nysa, les mesures destinées à détecter le passage de l ancienne route d accès à la ville, le géoradar a révélé des déplacements affectant un temple jusqu ici inconnu. Mots-clés: Géoradar, Fossé de Büyük Menderes, structure enfouie, faille active. X XI This thesis is dedicated to the memory of my dear mother Necla Yıldırım, who passed away during this study XII XIII Acknowledgements My sincere thanks go to my supervisors, Prof. Dr. Erhan Altunel, Prof. Dr. Maksim Bano and Prof. Dr. Mustapha Meghraoui, for their continued enthusiasm, encouragement and most importantly advice about how to structure a scientific report. I have three great supervisors but in separately I earn several things from them, Prof. Dr. Altunel was a perfect example to be a good guy and to be a hard worker, Prof. Dr Meghraoui always showed me how to be a scientist with his never ending patience and Prof. Dr Bano is the guy who teach me the deep of geophysics with his eternity knowledge. I am very happy to know a person like Assistant Prof. Dr. Ziyadin Çakır. He is my friend, my teacher and my brother with all his patience and help on this thesis. I am also indebted to the two great scientists, Prof. Dr. Serdar Akyüz and Associated Prof. Dr. Semih Ergintav, they always supported me with their knowledge since I was a undergraduate student in ITU. I could not ignore the support of my colleagues, Bayram Demir, Emre Evren, Dr. İsmail Kuşçu, Dr. Volkan Karabacak, Gülsen Uçarkuş, M. Ersen Aksoy, Cengiz Zabcı, Önder Yönlü, Taylan Sançar, Dr. Ahmet Akoğlu, Dr. Mathieu Ferry, Dr. Samir Belabbes and Dr. Florence Beck. Without moral and financial support of my dear sisters Pınar, Duygucan and especially my deceased mother this work would never have been completed. I never forget my old supervisor Prof. Dr Aykut Barka Finally, my thanks go to my dear wife Dr. Ezcan Yalçıner for her moral support, love and my son Kaan Yalçıner. This thesis financially supported by TÜBİTAK (105 Y 348), Research Foundation of Eskisehir Osmangazi University ( , ), CNRS-UMR 7516 Strasbourg and Embassy of France in Turkey XIV XV TABLE OF CONTENTS Sayfa SUMMARY... V ÖZET... VII RESUME... IX ACKNOWLEDGEMENTS... XIII TABLE OF CONTENTS... XV LIST OF FIGURES... XVII LIST OF TABLES... XXIII 1 INTRODUCTION Scope of the study: Methodology of the study: Geographic Location of the Study Area GPR (GROUND PENETRATING RADAR) METHOD History and Application Areas of GPR Investigation Depth and Resolution of GPR Method Data Acquisition Data Processing GEOLOGICAL SETTINGS OF STUDY AREA Stratigraphy Tectonic Features of the Study Area A General Overview of the Menderes Graben Characteristics of Faults in the Studied Locations Seismic Setting of the Study Area GPR SURVEYS IN THE BÜYÜK MENDERES GRABEN GPR Applications to Paleoseismological Studies Argavlı Trench Site Atça Trench Site GPR Applications to Offset Archaeological Features Ottoman Bridge... 81 XVI Roman Wall Roman Road GPR Applications to Buried Archaeological Features Abstract Introduction Site and test descriptions GPR Survey Analysis of GPR profiles and archaeological results Discussion and Conclusions DISCUSSIONS AND CONCLUSIONS Applications of GPR on Buried Active Faults Argavlı Atça Applications of GPR on Offset Archaeological Features Ottoman Bridge Roman Wall Roman Road Applications of GPR on Archaeology Nysa Suggestions REFERENCES CURRICULUM VITAE XVII LIST OF FIGURES Figure Page Figure 1.1: Main tectonic settings of Western Turkey Figure 1.2: (a) Trace (red arrows) of the North Anatolian fault near Erzincan. No vertical displacement along the fault but the morphological evidences expose the fault trace.(b) An approximately 3.5 m high E W-trending fault scarp cutting Quaternary deposits in the foot of Neogene hills (red arrows). Bee hives are on the up-thrown side. View towards west... 4 Figure 1.3: Schematic diagram showing the effects of relative rates of deformation versus geomorphic process on the preservation of a fault scarp (an example of primary, on-fault evidence). Many other types of paleoseismic features are subject to the same effects. In quadrant 1 (circled number) the regional erosion rate exceeds the fault displacement rate and the scarp is rapidly destroyed. In quadrant 2, the fault displacement rate is greater than the regional erosion rate, so the scarp is partially eroded yet some relief. In quadrant 3, the fault outcrops on a landscape undergoing slow subsidence and deposition, but the scarp is still partially preserved because the fault displacement rate is greater than the regional deposition rate. In quadrant 4, both sides of the fault are buried by sediments deposited at a more rapid rate than the rate of fault displacement. No surface scarp is formed under these conditions, but the evidence of paleoseismicity is preserved as onlapping strata in the subsurface... 5 Figure 1.4: GPR study sites, ancient cities and modern cities locations in Büyük Menderes graben Figure 1.5: Schematic view of a normal fault (a) Surface scarp after faulting. (b) Colluvial wedges form in front of the scarp. (c) Sedimentary levels cover the fault zone Figure 1.6: (a) Detail of faulted section of a trench. Paleosol unit c is preserved and indicates a downthrown movement along the fault after unit c and before unit b (between A.D. 610 and 890). Vertical offset measured from layers e and g near the fault yield 0.5 m. With warped units in the hanging wall and footwall, the vertical offset reach 1.0 m. (b) Reconstruction of the most recent faulting in the same trench. Preserved paleosol unit c near fault indicates the occurrence of a single faulting event before units b and b Figure 1.7: A general view of Büyük Menderes graben on Turkey geographic map Figure 2.1: Schematic view of GPR antennas working system Figure 2.2: Relation between velocity and relative dielectric constant Figure 2.3: Schematic view of GPR trace between two planar interfaces Figure 2.4: Approximate GPR-antenna footprint (Fresnel zone) for bistatic, dipole antennas Figure 2.5: GPR acquisition using the constant offset antenna configurations. (a) Schematic diagram view of constant offset acquisition. (b) An example GPR section acquired using constant offset XVIII Figure 2.6: GPR acquisition using the common midpoint antenna configurations. (a) Schematic diagram view of common midpoint acquisition. (b) An example GPR section acquired using common midpoint Figure 2.7: Collecting GPR data with 250 MHz shielded antenna with constant offset Figure 2.8: A sample GPR profile for showing antenna coupling loss Figure 2.9: Hyperbolic spreading of GPR data. (a) The conical projection of radar energy into the ground will allow radar energy to travel in an oblique direction to a buried point source. The twoway time (Δ t) is recorded and plotted in depth directly below the antenna where it was recorded (1 and 2). (b) When many such reflections are recorded as the surface antennas move toward and then away from a buried object, the result is a reflection hyperbola (3), when all traces are viewed in profile Figure 2.11: An example GPR profile and its processing steps. (a) Raw data. (b) After filtered with move starttime. (c) After filtered with subtract-mean (dewow). (d) After filtered with energy decay. (e) After filtered with subtracting average. (f) After velocity analysis with the diffraction hyperbolas method Figure 2.12: Radio spectrum in an urban area Figure 2.13: Schematic description of bandpass frequency filter Figure 2.14: GPR data with modeled diffractions from the surface scatterers (light blue hyperbolas) superimposed. With a velocity of 0.3 m/ns was used Figure 3.1: Simplified geological map on elevation map of the Büyük Menderes Graben showing general geological units Figure 3.2: Upper Neogene units in northwest of Umurlu Figure 3.3: Relation between geological units in the study area. (a) Neogene clastics are separated from Pre-Neogene basement (Menderes massive) by a low angle normal fault (yellow dashed line) (b) Neogene clastics are separated from Pre-Neogene basement (Menderes massive) by a low angle normal fault (yellow dashed line)and the active fault (red dashed line) separates graben deposits from Neogene clastics Figure 3.4: Main active tectonic structures in Western Anatolia Figure 3.5: Büyük Menderes graben 150 km length and 5 20 km width inland, with exposing of active faults Figure 3.6: The satellite view of Kuyucak and its neighborhood. The large alluvial fans cover the fault traces Figure 3.7: Geological and active faults map between Germencik and Sazlıköy Figure 3.8: (a) The fault scarp near Argavlı village (view towards N). (b) The fault scarp near Moralı village (view towards NE). (c)the fault scarp near Reisköy village (view towards NE) Figure 3.9: (a) The fault trace between Sazlıköy and Argavlı village (view towards NW). (b) The fault plane and fault scratches between Sazlıköy and Argavlı village XIX Figure 3.10: The Ottoman Bridge which located near Sazlıköy and the fault morphology at the background Figure 3.11: Basic geological and active faulting map of Atça trench site and its neighbourhood Figure 3.12: GPR profiles and trench location illustration on the site photo Figure 3.13: The location of the ancient road and active faults around Sultanhisar Figure 3.14: The Roman road Figure 3.15: Seismicity map of Büyük Menderes graben between 2100 BC 2007 AD Figure 4.1: Shaded relief image of the Büyük Menderes graben (SRTM) shows GPR locations. Locations of trenches indicated by red fill stars, offset archaeological features indicated by green fill rectangles and buried archaeological features indicated by yellow fill triangle Figure 4.2: Shaded relief image shows active faults and Argavlı trench site in western part of the Büyük Menderes graben Figure 4.3: General view of the Argavlı trench site (view towards NW) shows locations of GPR profiles and trench Figure 4. 4: 250 MHz antenna profile (argavlı_250_prf1 in Figure 4.4). Highlighted area indicades the location of anomalous zone Figure 4.5: 250 MHZ GPR profile in the Argavlı trench site (a) Raw profile. (b) Processed profile. (c) Interpreted profile. Dashed lines represent the layers, thin red line represents possible faults Figure 4.6: 500 MHZ GPR profile in the Argavlı trench site (a) Proc
Related Search
Similar documents
View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks