Évariste Galois and Solvable Permutation Groups - PDF

Description
Évariste Galois and Solvable Permutation Groups David A. Cox Department of Mathematics Amherst College Bilbao May 2012 Prologue Most mathematicians know about Galois: He introduced

Please download to get full document.

View again

of 61
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information
Category:

Recipes/Menus

Publish on:

Views: 34 | Pages: 61

Extension: PDF | Download: 0

Share
Transcript
Évariste Galois and Solvable Permutation Groups David A. Cox Department of Mathematics Amherst College Bilbao May 2012 Prologue Most mathematicians know about Galois: He introduced the concept of group. He created Galois theory. He defined finite fields. This Talk We will learn some of the amazing other things Galois did, especially his work on solvable permutation groups. Prologue Most mathematicians know about Galois: He introduced the concept of group. He created Galois theory. He defined finite fields. This Talk We will learn some of the amazing other things Galois did, especially his work on solvable permutation groups. Prologue Most mathematicians know about Galois: He introduced the concept of group. He created Galois theory. He defined finite fields. This Talk We will learn some of the amazing other things Galois did, especially his work on solvable permutation groups. Prologue Most mathematicians know about Galois: He introduced the concept of group. He created Galois theory. He defined finite fields. This Talk We will learn some of the amazing other things Galois did, especially his work on solvable permutation groups. Outline 1 Lagrange Three Snapshots 2 Galois Four Snapshots 3 Solvable Permutation Groups Primitive Equations The Affine Linear Group Finite Fields The Main Theorem Outline 1 Lagrange Three Snapshots 2 Galois Four Snapshots 3 Solvable Permutation Groups Primitive Equations The Affine Linear Group Finite Fields The Main Theorem Outline 1 Lagrange Three Snapshots 2 Galois Four Snapshots 3 Solvable Permutation Groups Primitive Equations The Affine Linear Group Finite Fields The Main Theorem Three Snapshots from Lagrange In 1770, Lagrange wrote the wonderful paper: Réflexions sur la résolution des équations which introduced many of the key players of group theory and Galois theory. We will give three excerpts from this paper to show how Lagrange laid the foundation for what Galois did. Three Snapshots from Lagrange In 1770, Lagrange wrote the wonderful paper: Réflexions sur la résolution des équations which introduced many of the key players of group theory and Galois theory. We will give three excerpts from this paper to show how Lagrange laid the foundation for what Galois did. Three Snapshots Snapshot #1 A Quote A function y of the roots of a polynomial gives values y, y,... when the roots are permuted. Lagrange says: il s agit ici uniquement de la forme de valeurs et non de leur quantité absolue. Since y = A(α 1,...,α n ) B(α 1,...,α n ) has the form A(x 1,..., x n ) B(x 1,..., x n ), we see that Lagrange regarded the roots as variables! Three Snapshots Snapshot #2 The Universal Extension Let σ i be the ith elementary symmetric polynomial. Consider K = k(σ 1,...,σ n ) L = k(x 1,...,x n ). Lagrange s Theorem If t, y L and t is fixed by all permutations that fix y, then t is a rational expression in y,σ 1,...,σ n. K K(y) L gives Gal(L/K(y)) = {permutations fixing y}. So t fixed field of Gal(L/K(y)) = t K(y). Hence K(y) is the fixed field of Gal(L/K(y)). Lagrange knew the Galois correspondence! Three Snapshots Snapshot #2 The Universal Extension Let σ i be the ith elementary symmetric polynomial. Consider K = k(σ 1,...,σ n ) L = k(x 1,...,x n ). Lagrange s Theorem If t, y L and t is fixed by all permutations that fix y, then t is a rational expression in y,σ 1,...,σ n. K K(y) L gives Gal(L/K(y)) = {permutations fixing y}. So t fixed field of Gal(L/K(y)) = t K(y). Hence K(y) is the fixed field of Gal(L/K(y)). Lagrange knew the Galois correspondence! Three Snapshots Snapshot #2 The Universal Extension Let σ i be the ith elementary symmetric polynomial. Consider K = k(σ 1,...,σ n ) L = k(x 1,...,x n ). Lagrange s Theorem If t, y L and t is fixed by all permutations that fix y, then t is a rational expression in y,σ 1,...,σ n. K K(y) L gives Gal(L/K(y)) = {permutations fixing y}. So t fixed field of Gal(L/K(y)) = t K(y). Hence K(y) is the fixed field of Gal(L/K(y)). Lagrange knew the Galois correspondence! Three Snapshots Snapshot #3 Definition Rational functions t, y L are similar ( semblable ) when a permutation fixes t if and only if it fixes y. Corollary of Lagrange s Theorem Functions t, y L are similar if and only if K(t) = K(y). For us, the Galois correspondence of K L is a bijection intermediate fields subgroups of S n. Lagrange worked with individual rational functions. The notion of similar function is his attempt at an intrinsic formulation. Lagrange knew the Galois correspondence! Three Snapshots Snapshot #3 Definition Rational functions t, y L are similar ( semblable ) when a permutation fixes t if and only if it fixes y. Corollary of Lagrange s Theorem Functions t, y L are similar if and only if K(t) = K(y). For us, the Galois correspondence of K L is a bijection intermediate fields subgroups of S n. Lagrange worked with individual rational functions. The notion of similar function is his attempt at an intrinsic formulation. Lagrange knew the Galois correspondence! Three Snapshots Snapshot #3 Definition Rational functions t, y L are similar ( semblable ) when a permutation fixes t if and only if it fixes y. Corollary of Lagrange s Theorem Functions t, y L are similar if and only if K(t) = K(y). For us, the Galois correspondence of K L is a bijection intermediate fields subgroups of S n. Lagrange worked with individual rational functions. The notion of similar function is his attempt at an intrinsic formulation. Lagrange knew the Galois correspondence! Four Snapshots from Galois Évariste Galois was born October 25, 1811 and died May 31, We are celebrating the 200th anniversary of his birth. In January 1831, he wrote the amazing paper: Mémoire sur les conditions de résolubilité des équations par radicaux I will give four excerpts from this memoir to give you a sense of how Galois thought about Galois theory. Four Snapshots Snapshot #1 PROPOSITION I THÉORÈME. Soit une équation donnée, dont a,b,c,... sont les m racines. Il y aura toujours un groupe de permutations des lettres a,b,c,... qui jouira des propriété suivant: 1 o que toute fonction des racines, invariable par les substitutions de ce groupe, soit rationallement connue; 2 o réciproquement, que toute fonction des racines déterminable rationallement, soit invariable par ces substitutions. The asterisks and indicate marginal notes in Galois s manuscript. Four Snapshots Snapshot #1 Marginal Note for invariable Nous appelons ici invariable non seulement une fonction dont la forme est invariable par les substitutions des racines entre elles, mais encore celle dont las valeur numérique ne varieriat pas par ces substitutions. Galois is aware that his theory applies to the roots of any polynomial, not just the case when the roots are variables. Galois has gone beyond Lagrange! Four Snapshots Snapshot #2 Galois s Group Quelle que soit l équation donnée, on pourra trouver une fonction V des racines telle que toutes les racines soient fonctions rationelles des V. Cela posé, considérons l equation irréductible done V est racine (lemmes III et IV). Soient V, V, V,..., V (n 1) les racines de cette equation. Soient ϕv,ϕ 1 V,ϕ 2 V,...,ϕ m 1 V les racines de la proposée. Écrivons les n permutations suivants des racines: (V), ϕ V, ϕ 1 V, ϕ 2 V,..., ϕ n 1 V, (V ), ϕ V, ϕ 1 V, ϕ 2 V,...,...,...,...,...,...,...,..., (V (m 1) ), ϕ V (m 1), ϕ 1 V (m 1), ϕ 2 V (m 1),..., ϕ n 1 V (m 1) Je dis que ce groupe de permutations jouit de la propriété énoncée. Four Snapshots Snapshot #2 For Galois, permutations are bijections {1,..., m} {roots} call these arrangements while substitutions are bijections {roots} {roots} call these substitutions. Arrangements give a strong visual picture. Substitutions give a group. Arrangements give a principal homogeneous space for the substitutions. Marginal note for substitutions Mettre partout á la place du mot permutation le mot substitution But then he crosses this out! Four Snapshots Snapshot #2 For Galois, permutations are bijections {1,..., m} {roots} call these arrangements while substitutions are bijections {roots} {roots} call these substitutions. Arrangements give a strong visual picture. Substitutions give a group. Arrangements give a principal homogeneous space for the substitutions. Marginal note for substitutions Mettre partout á la place du mot permutation le mot substitution But then he crosses this out! Four Snapshots Snapshot #2 For Galois, permutations are bijections {1,..., m} {roots} call these arrangements while substitutions are bijections {roots} {roots} call these substitutions. Arrangements give a strong visual picture. Substitutions give a group. Arrangements give a principal homogeneous space for the substitutions. Marginal note for substitutions Mettre partout á la place du mot permutation le mot substitution But then he crosses this out! Four Snapshots Snapshot #2 For Galois, permutations are bijections {1,..., m} {roots} call these arrangements while substitutions are bijections {roots} {roots} call these substitutions. Arrangements give a strong visual picture. Substitutions give a group. Arrangements give a principal homogeneous space for the substitutions. Marginal note for substitutions Mettre partout á la place du mot permutation le mot substitution But then he crosses this out! Four Snapshots Snapshot #2 For Galois, permutations are bijections {1,..., m} {roots} call these arrangements while substitutions are bijections {roots} {roots} call these substitutions. Arrangements give a strong visual picture. Substitutions give a group. Arrangements give a principal homogeneous space for the substitutions. Marginal note for substitutions Mettre partout á la place du mot permutation le mot substitution But then he crosses this out! Four Snapshots Snapshot #3 Galois introduced normal subgroups as follows. PROPOSITION III THÉORÈME. Si ll on adjoint á une équation TOUTES les racines d une équation auxiliaire, les groupes dont il est question dans le théorème II jouiront de plus de cette propriété que les substitutions sont les mêmes dans chaque groupe. If G is the Galois group and a is one arrangement, then G a is Galois s groupe. The cosets of H G give G a = g 1 H a g 2 H a. These are the groupes of PROPOSITION III. Key observation: g(g i H a) = g i H a g g i Hg 1 i. So sont les mêmes means H is normal! Four Snapshots Snapshot #3 Galois introduced normal subgroups as follows. PROPOSITION III THÉORÈME. Si ll on adjoint á une équation TOUTES les racines d une équation auxiliaire, les groupes dont il est question dans le théorème II jouiront de plus de cette propriété que les substitutions sont les mêmes dans chaque groupe. If G is the Galois group and a is one arrangement, then G a is Galois s groupe. The cosets of H G give G a = g 1 H a g 2 H a. These are the groupes of PROPOSITION III. Key observation: g(g i H a) = g i H a g g i Hg 1 i. So sont les mêmes means H is normal! Four Snapshots Snapshot #3 Galois introduced normal subgroups as follows. PROPOSITION III THÉORÈME. Si ll on adjoint á une équation TOUTES les racines d une équation auxiliaire, les groupes dont il est question dans le théorème II jouiront de plus de cette propriété que les substitutions sont les mêmes dans chaque groupe. If G is the Galois group and a is one arrangement, then G a is Galois s groupe. The cosets of H G give G a = g 1 H a g 2 H a. These are the groupes of PROPOSITION III. Key observation: g(g i H a) = g i H a g g i Hg 1 i. So sont les mêmes means H is normal! Four Snapshots Snapshot #4 Galois had a wonderful result about the Galois group of a solvable polynomial of prime degree. PROPOSITION VII PROBLÈME. Quel est le groupe d une équation irréductible d un degré premier n, soluble par radicaux? Faisons en general x n = x 0, x n+1 = x 1,... Donc, si d une équation irréductible de degré premier est soluble par radicaux, le groupe de cette léquation ne saurait contenir que les substitutions de la forme x k x ak+b a et b étant des constants. Four Snapshots Snapshot #4 In modern terms, Galois s Proposition VII says that the Galois group of an irreducible polynomial of prime p is solvable by radicals if and only if the Galois group is isomorphic to a subgroup of the affine linear group AGL(1,F p ) = {x ax + b a, b F p, a 0}. There are two aspects of this result worth mentioning: Up to conjugacy, AGL(1,F p ) is the maximal solvable subgroup of the symmetric group S p. This proposition implies that such a polynomial is solvable by radicals iff any two roots generate the splitting field. Four Snapshots Snapshot #4 In modern terms, Galois s Proposition VII says that the Galois group of an irreducible polynomial of prime p is solvable by radicals if and only if the Galois group is isomorphic to a subgroup of the affine linear group AGL(1,F p ) = {x ax + b a, b F p, a 0}. There are two aspects of this result worth mentioning: Up to conjugacy, AGL(1,F p ) is the maximal solvable subgroup of the symmetric group S p. This proposition implies that such a polynomial is solvable by radicals iff any two roots generate the splitting field. There is More! The four snapshots from Galois: are well-known to most mathematicians, and illustrate nicely the power of the theory he developed. However, Galois did a lot more! In particular, we will explore: what Galois knew about solvable permutation groups, and why he invented finite fields. There is More! The four snapshots from Galois: are well-known to most mathematicians, and illustrate nicely the power of the theory he developed. However, Galois did a lot more! In particular, we will explore: what Galois knew about solvable permutation groups, and why he invented finite fields. There is More! The four snapshots from Galois: are well-known to most mathematicians, and illustrate nicely the power of the theory he developed. However, Galois did a lot more! In particular, we will explore: what Galois knew about solvable permutation groups, and why he invented finite fields. There is More! The four snapshots from Galois: are well-known to most mathematicians, and illustrate nicely the power of the theory he developed. However, Galois did a lot more! In particular, we will explore: what Galois knew about solvable permutation groups, and why he invented finite fields. There is More! The four snapshots from Galois: are well-known to most mathematicians, and illustrate nicely the power of the theory he developed. However, Galois did a lot more! In particular, we will explore: what Galois knew about solvable permutation groups, and why he invented finite fields. There is More! The four snapshots from Galois: are well-known to most mathematicians, and illustrate nicely the power of the theory he developed. However, Galois did a lot more! In particular, we will explore: what Galois knew about solvable permutation groups, and why he invented finite fields. Primitive Equations The Main Problem Definition On appelle équations non primitives les équations qui étant, par exemple, du degré mn, se décomposent en m facteurs du degré n, au moyen d une seule équation du degré m. Example x 4 2 has degree 4 = 2 2. Adjoining roots of x 2 2 gives x 4 2 = ( x 2 2 )( x ). Thus x 4 2 is imprimitive ( non primitive ). Revenons maintenant á notre object, et cherchons en général dans quel cas une équation primitive est soluble par radicaux. Primitive Equations The Main Problem Definition On appelle équations non primitives les équations qui étant, par exemple, du degré mn, se décomposent en m facteurs du degré n, au moyen d une seule équation du degré m. Example x 4 2 has degree 4 = 2 2. Adjoining roots of x 2 2 gives x 4 2 = ( x 2 2 )( x ). Thus x 4 2 is imprimitive ( non primitive ). Revenons maintenant á notre object, et cherchons en général dans quel cas une équation primitive est soluble par radicaux. Primitive Equations The Main Problem Definition On appelle équations non primitives les équations qui étant, par exemple, du degré mn, se décomposent en m facteurs du degré n, au moyen d une seule équation du degré m. Example x 4 2 has degree 4 = 2 2. Adjoining roots of x 2 2 gives x 4 2 = ( x 2 2 )( x ). Thus x 4 2 is imprimitive ( non primitive ). Revenons maintenant á notre object, et cherchons en général dans quel cas une équation primitive est soluble par radicaux. Primitive Equations The First Result Galois s Version... pour qu une équation primitive soit soluble par radicaux, it faut que son degré soit de la forme p ν, p étant premier. Definition A subgroup G S n is imprimitive if {1,...,n} = R 1 R k, k 1, R i 1 for some i and elements of G preserve the R i. Then G is primitive if it is not imprimitive. Theorem If G S n is primitive and solvable, then n = p ν, p prime. Primitive Equations The First Result Galois s Version... pour qu une équation primitive soit soluble par radicaux, it faut que son degré soit de la forme p ν, p étant premier. Definition A subgroup G S n is imprimitive if {1,...,n} = R 1 R k, k 1, R i 1 for some i and elements of G preserve the R i. Then G is primitive if it is not imprimitive. Theorem If G S n is primitive and solvable, then n = p ν, p prime. Primitive Equations The First Result Galois s Version... pour qu une équation primitive soit soluble par radicaux, it faut que son degré soit de la forme p ν, p étant premier. Definition A subgroup G S n is imprimitive if {1,...,n} = R 1 R k, k 1, R i 1 for some i and elements of G preserve the R i. Then G is primitive if it is not imprimitive. Theorem If G S n is primitive and solvable, then n = p ν, p prime. Primitive Equations Proof Assume G S n is primitive and solvable. To show: n = p ν. Let N be a minimal normal subgroup of G. One can prove that there is a simple group A such that N A ν This is a standard fact about minimal normal subgroups. Then: G primitive = N transitive. G solvable = N F ν p. N transitive and abelian = its isotropy subgroups are all equal and hence trivial. Thus: p ν = N = orbit isotropy subgroup = n 1 = n. QED Primitive Equations Proof Assume G S n is primitive and solvable. To show: n = p ν. Let N be a minimal normal subgroup of G. One can prove that there is a simple group A such that N A ν This is a standard fact about minimal normal subgroups. Then: G primitive = N transitive. G solvable = N F ν p. N transitive and abelian = its isotropy subgroups are all equal and hence trivial. Thus: p ν = N = orbit isotropy subgroup = n 1 = n. QED Primitive Equations Proof Assume G S n is primitive and solvable. To show: n = p ν. Let N be a minimal normal subgroup of G. One can prove that there is a simple group A such that N A ν This is a standard fact about minimal normal subgroups. Then: G primitive = N transitive. G solvable = N F ν p. N transitive and abelian = its isotropy subgroups are all equal and hence trivial. Thus: p ν = N = orbit isotropy subgroup = n 1 = n. QED The Affine Linear Group The Affine Linear Group When G is primitive and solvable, the proof just given shows that N F ν p is normal in G. One can show without difficulty that G AGL(ν,F p ) = {x Ax + b A GL(ν,F p ), b F ν p}. Galois knew this! Letter to Chevalier, 29 May 1832 Toutes les permuations d une équation primitive soluble par radicaux sont de la forme x k.l.m... /x ak+bl+cm+...+f.a1 k+b 1 l+c 1 m+...+g.... k, l, m,... étant ν indices qui prenant chacun p valeurs indiquent toutes les racines. Les indices sont pris suivant le module p, c est-á-dire que la racines sera la même quand on adjoutera á l un des indices un multiple de p. Finite Fields Finite Fields and the Affine Semilinear Group When a primitive of degree p ν is solvable by radicals, its Galois group lies in AGL(ν,F p ) S p ν. However, AGL(ν,F p ) is not solvable when ν 2. What is its maximal primitive solvable subgroup? This is the question Galois wanted to answer. Galois used the Galois th
Related Search
Similar documents
View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks