Dissertation. zur Erlangung des Doktorgrades (Dr. rer. nat.) der. Mathematisch-Naturwissenschaftlichen Fakultät. der - PDF

Evolutionary history of Southern Arabian faunal elements with a special focus on habitat fragmentation of two model organisms, Reissita simonyi (REBEL, 1899; Lepidoptera: Zygaenidae) and Hyla savignyi

Please download to get full document.

View again

of 127
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.


Publish on:

Views: 31 | Pages: 127

Extension: PDF | Download: 0

Evolutionary history of Southern Arabian faunal elements with a special focus on habitat fragmentation of two model organisms, Reissita simonyi (REBEL, 1899; Lepidoptera: Zygaenidae) and Hyla savignyi (AUDOUIN, 1827; Amphibia: Hylidae) Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Cornelya F. C. Klütsch Leverkusen (Nordrhein-Westfalen) Bonn-März 2006 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn. Die Arbeit wurde am Zoologischen Forschungsmuseum Alexander Koenig in Bonn durchgeführt. Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn elektronisch publiziert. Erstgutachter: Univ.-Prof. Dr. J.-W. Wägele Zweitgutachter: Priv.-Doz. Dr. B. Misof Kommisionsmitglied (fachnah): Prof. Dr. Ch. Oberprieler Kommisionsmitglied (fachangrenzend): Prof. Dr. Jes Rust Datum der mündlichen Prüfung: Erscheinungsjahr: 2006 In memoriam Univ.-Prof. Dr. Clas M. Naumann zu Königsbrück (* ) Contents Preface Zusammenfassung Summary VII 1X XI 1 General Introduction Preamble Study area Faunal elements and their ecology Reissita simonyi Hyla savignyi Structure and aims of the present thesis References 18 2 The distribution of the yellow-lemon tree frog Hyla savignyi (AUDOUIN, 1827) in Southern Arabia: updates and extensions of previous records Abstract Introduction Results and discussion Acknowledgements References 26 Appendix 28 3 Extended distribution patterns of the Arabian burnet moth Reissita simonyi (Lepidoptera: Zygaenidae; REBEL, 1899) and the Arabian wall brown Lasiommata felix (Lepidoptera: Nymphalidae: Satyrinae; WARNECKE, 1929) in Southern Arabia Abstract Introduction General Introduction Description of R. simonyi Biology and Ecology Distribution Remarks Material and methods Results Discussion Acknowledgements References 43 Appendix 46 Contents 4 Cross-utility, size homoplasy, and evolution of microsatellites in the genus Hyla (Amphibia: Hylidae) Abstract Introduction Material and methods Results and Discussion Cross-species amplification Size homoplasy and undetected mutations Evolution of microsatellite locus WHA5-22A Ascertainment bias or directional evolution? Acknowledgements References 64 Appendices 68 5 Characterization of microsatellite loci for Reissita simonyi (REBEL, 1899), (Lepidoptera, Zygaenidae) Abstract Introduction Material and methods Results and Discussion Acknowledgements References 77 Appendix 79 6 Population genetic structure of Hyla savignyi (Hylidae; Amphibia) in the highlands of Yemen is shaped by a mixture of isolation by distance, partial limited migration, and long distance gene flow Abstract Introduction Material and methods Sampling DNA extraction and amplification Statistical data analysis Population structure and admixture Results Within population genetic variation Linkage disequilibrium Hardy Weinberg tests and bottlenecks Population genetic differentiation Isolation by distance Assignment of individuals and detection of first generation migrants Discussion Explanations for strong differentiation of populations and low diversity in populations Connectivity of populations, asymmetrical Contents gene flow, and long distance gene flow Isolation factors Conclusions Acknowledgements References 103 Appendices The population structure of the burnet moth Reissita simonyi (Zygaenidae; Lepidoptera) in the highlands of Yemen is predominantly shaped by landscape topology effects and dispersion abilities rather than habitat fragmentation Abstract Introduction Material and methods Sampling DNA extraction and amplification Statistical data analysis Analysis of population structure using a network approach (DYER & NASON, 2004) Analysis of isolation by distance and isolation by altitudinal distance Results and discussion Linkage disequilibrium Hardy Weinberg tests and bottlenecks High inbreeding coefficients versus strong connectivity of populations Isolation by distance and isolation by altitudinal distance Differentiation of subspecies using a network approach Identification of key populations Genetic connectivity of populations within subspecies Within population variability Habitat fragmentation versus influence of landscape topology on genetic structure Acknowledgements References 133 Appendices General discussion References 152 Preface VII I am deeply indebted to Prof. Dr. Clas Naumann, who supported my study, wherever he could. Not just being a professional supervisor in scientific questions, but being also a warmhearted mentor, who introduced me to the Yemeni culture with its rich history and fascinating nature. He influenced me in many ways far beyond the pure dissertation thesis. Unfortunately, he died much too early on February, the 15 th 2004 before this project had been completed. Likewise, I am greatly obliged to PD Dr. Bernhard Misof, who supported me during the last years in variable ways. Especially his constructive ideas and critical remarks helped to complete this study. Moreover, I am grateful for his steady encouragement and motivation. Lastly, I am thankful for the brilliant atmosphere in the lab, to which Bernhard contributed mostly. I am grateful to Prof. Dr. Johann-Wolfgang Wägele, who took over Prof. Dr. Naumann s role as the major supervisor and gave me helpful comments, which improved an earlier draft of this work. Moreover, I am thankful to Prof. Dr. Wolfgang Böhme for all the help he provided. Furthermore, I want to express my gratitudes to the Berlin connection : Dr. Norbert Kilian, Dr. Peter Hein, Prof. Dr. Harald Kürschner, Jörg Meister, Dr. Matthias Schultz, Simone Kipka, and Prof. Dr. Christoph Oberprieler for fruitful discussions and adventurous trips to Yemen. Similar, I am appreciative to Dr. Bruno Mies (Essen), Dr. Matthias Schultz (Hamburg), and Dr. Tony van Haarten (Sana a). Especially, I want to show appreciation to Prof. Dr. Christoph Oberprieler, who became a member of my dissertation committee. I am greatly indebted to Prof. Dr. Abdul K. Nasher and his family. Abdul Karim helped me during my field trips in Yemen and provided me guidance and assistance, whenever I needed a helping hand. I also want to thank Masa a Al-Jumaly, Rasha, Rhiman, and Osama for their great hospitality. Moreover, I want to express thanks Dr. Mohamed A. Hubaishan (AREA, Mukalla) and Dr. Abdullah Rassam for all their help they offered me during my field trips and their great hospitality. Preface VIII This project was supported with a doctoral fellowship from the Federal Ministry for Education and Research within the frame of BIOTA-EAST. I want to show gratitude the graduate school Evolution und Biodiversität in Raum und Zeit (DFG) at the Rheinische-Friedrich-Wilhelms University in Bonn. Especially, I would like to thank all members of the graduate school for interesting discussions and workshops as well as for successful symposia. I want to express my thankfulness to Prof. Dr. Jes Rust, who agreed to become a member of my dissertation committee. Dr. Storai Naumann-Nawabi generously provided me slides from Yemen from her husband s collection and had great interest in my work. I am grateful to all lab members of the molecular lab of the ZFMK for the constructive and humorous time there; namely Cort Anderson, Jonas Astrin, Martina Bleidißel, Manuela Brenk, Inge Bischoff, Christoph Dahmen, Martin Haase, Monika Hachtel, Fabian Herder, Patrick Kück, Pia Langhoff, Harald Letsch, Alexandra Patt, JeanLuc Meier, Oliver Niehuis, Björn von Reumont, Martin Schäfer, Carola Schmitt, Oliver Schultz, Anja Schunke, Julia Schwarzer, Rainer Sonnenberg, Heidi Stapel, David Tarkhnishvili, Berit Ullrich, and Martin Wiemers. I want to express my gratitude for many, many,. breakfasts and barbecues, 3 lab trips to Italy (molto bene!!!), special hours of craftwork for diverse events, visits in the beer garden To avoid the impression of a lazy and always drunken lab, I want to emphasize that I am also grateful for the constructive discussions in the journal clubs, seminars and coffee-parties. Special thanks deserve Claudia Etzbauer for being the sitting hen in the molecular lab of the ZFMK. She is not only acknowledged for her gleaming technical work, but also for her personal support in every situation. Special credits earn my friends Nicole Marschall and Thorsten Kuhl for their support, encouragement, and friendship. Similarly, I am gratified to Andreas Bierke, Rüdiger Bos, Babette Richter, Wiebke Scherf, and Uwe Schumann. Lastly, I am greatly obliged to my family for helping me to pursue my goals. Zusammenfassung IX Habitatfragmentierung wird als eine der Hauptursachen für die genetische Isolierung von Populationen angesehen. Natürliche Fragmentierung von Habitaten kann durch klimatische Schwankungen und deren Konsequenzen (z. B. Desertifikation), wie auch durch Naturkatastrophen (z. B. Buschfeuer oder Überschwemmungen) hervorgerufen werden. In letzter Zeit wurde Habitatfragmentierung durch anthropogene Prozesse verstärkt. Das Wissen über Fragmentierung und Populationsdifferenzierung als auch die Verbreitung der Tierarten ist für den südarabischen Raum sehr begrenzt. Die beiden ausgewählten faunistischen Elemente waren Reissita simonyi (Lepidoptera: Zygaenidae) und Hyla savignyi (Amphibia: Hylidae). Diese wurden aufgrund spezieller ökologischer Charakteristika ausgewählt, die sie vermutlich anfällig für Habitatfragmentierung machen. Darüber hinaus zeigen beide Arten ein unterschiedliches Dispersionsvermögen, welches ein essentieller Faktor für die Aufrechterhaltung von Genfluß auch über längere Distanzen ist. Während Reissita simonyi ein tagaktives, flugfähiges Widderchen ist, welches vermutlich weitere Distanzen zurücklegen kann als H. savignyi, wird bei Letzterem angenommen, dass es ähnlich anderer Amphibien eine hohe Standorttreue zeigt und im Allgemeinen nur wenige Kilometer migriert. Die Ergebnisse zeigen, dass beide Arten Heterozygotiedefizite und hohe Inzuchtkoeffizienten aufweisen. Außerdem indizieren die hohen gefunden F ST -Werte zwischen Populationspaaren einen eingeschränkten Genfluß zwischen den Habitatfragmenten bei H. savignyi. Darüber hinaus kann in beiden Arten eine signifikante Korrelation zwischen genetischer Differenzierung und geographischer Distanz ( isolation by distance ) gefunden werden. Ferner konnte in beiden Arten eine signifikante Korrelation von genetischer Differenzierung und Vertikaldistanzen ermittelt werden. Dies und die starke Strukturierung der Populationen (hohe F ST -Werte) bestätigten die zuvor geäußerte Annahme, dass H. savignyi über eine geringe Dispersionsfähigkeit verfügt und die untersuchten Populationen bereits stark voneinander differenziert sind. Jedoch zeigte sich in H. savignyi auch, dass nicht nur die oben genannten Effekte die genetische Struktur beeinflussten, sondern auch das Auftreten von Genfluß über größere geographische Distanzen die Populationsstruktur dieser Art nachhaltig beeinflusst hat. Darüber hinaus offenbarte die Populationsstruktur von H. savignyi eine klare Untergliederung in drei Gruppen, die eine Nord- Südausrichtung aufweisen. Innerhalb dieser Gruppen kann keine zunehmende Zusammenfassung X genetische Differenzierung mit zunehmender geographischer Distanz festgestellt werden, was auf eine stärkere Vernetzung innerhalb dieser Gruppen hinweist. In R. simonyi kann die Unterteilung in zwei Subspezies genetisch bestätigt werden. Die genetische Analyse zeigt eine deutliche Unterteilung in zwei Gruppen, die sich mit beiden Subspezies deckt. Darüber hinaus wird diese klare Zweiteilung durch einen höheren genetischen Differenzierungsgrad unterstützt. Innerhalb der Subspezies zeigen sich durchschnittlich geringere genetische Differenzierungen, was auf eine höhere Verwandtschaft innerhalb der Subspezies hinweist. Insgesamt zeigt R. simonyi einen deutlich geringeren Grad an genetischer Differenzierung als H. savignyi. Dies lässt den Schluss zu, dass die Populationen von R. simonyi genetisch stärker vernetzt sind, wenn auch hohe Inzuchtkoeffizienten und Heterozygotiedefizite gefunden wurden, welche auf Nullallele zurückgeführt werden. Ein Grund für diese geringe genetische Differenzierung ist sicherlich die Flugfähigkeit von R. simonyi, die dazu führt, dass größere geographische Distanzen zurückgelegt werden können. Darüber hinaus scheint die Futterpflanze in ausreichender Häufigkeit vorzukommen, so dass eine starke Isolierung von R. simonyi-populationen vermieden wird. Nicht zuletzt legen die Daten nahe, dass Individuen von R. simonyi leicht von einem Berg zum nächsten gelangen können ( top-hopping ), so dass eine starke genetische Differenzierung vermieden wird. Summary XI Habitat fragmentation is assumed to be one of the major factors for genetic separation of populations. Natural fragmentation of habitats may be caused by climatic changes and their consequences (e. g. desertification), as well as by natural disasters like bush fires or inundations. Recently, habitat fragmentation increased due to human impact. Only little is known about habitat fragmentation and population differentiation as well as distributional ranges of faunal elements in Southern Arabia. Therefore, detailed studies for this geographical area were still lacking. The two faunal elements chosen for this study were Reissita simonyi (Lepidoptera: Zygaenidae) and Hyla savignyi (Amphibia: Hylidae). These species have special ecological features, which make them presumable sensitive to habitat fragmentation. Moreover, both species have different dispersion abilities, which is a crucial factor to maintain gene flow also over higher distances between populations. Reissita simonyi is a flying diurnal moth, which is assumed to migrate longer distances than Hyla savignyi. Amphibians often demonstrate high pond fidelity and generally migrate only a few kilometers, although long-distance migration was found in a closely related species, H. arborea. Results indicate for both species heterozygosity deficiencies and high inbreeding coefficients. Furthermore, high F ST values between population pairs in H. savignyi indicate restricted gene flow between patches. Moreover, in both species a significant correlation of genetic differentiation and geographical distance (isolation by distance) is found. Besides, in both species a significant correlation between altitude and genetic differentiation is present. Thus, in Hyla savignyi population structure is strongly formed by geographical distance and high genetic differentiation in general (F ST ), which is consistent with the assumption of low dispersion ability. However, it is also demonstrated that not only the aforementioned effects shaped the genetic structure of H. savignyi populations, but also by long distance gene flow can be detected. The population structure of H. savignyi show a clear substructure into three major groups, which display a North to South extension. Within these groups, no isolation by distance effects can be observed. This indicates a higher connectivity within than among groups. In R. simonyi, the division in two subspecies can be confirmed with genetic data. The genetic analysis reveals a significant separation of two groups, which are identical with Summary XII the subspecies. This clear pattern is supported by a greater genetic differentiation between groups in comparison to within-group differentiation. Thus, within subspecies, the genetic differentiation is lower, which indicates a higher connectivity within subspecies. In total, the degree of genetic differentiation is much lower in R. simonyi than in H. savignyi. Hence, it is concluded that populations of R. simonyi are more genetically tied than populations of H. savignyi, besides high inbreeding coefficients and heterozygosity deficiencies, which are assumed to be based on null alleles. One explanation for this low genetic differentiation is surely the higher dispersion ability caused by the ability to fly and therefore, the potential to migrate over larger geographical distances. A second possible explanation is that the larval food plants occur with a sufficient frequency and therefore a strong isolation of populations of R. simonyi is avoided. Finally, the data support the well known phenomenon tophopping in Lepidoptera, which is the ability to migrate from one hill to another very easily. A combination of all three possibilities is the most likely explanation for the low genetic differentiation found in R. simonyi. 1 General Introduction 1.1. Preamble Population genetics aims to understand the population dynamics within and among closely related species with all its aspects (HARTL, 1999), like e. g. gene flow, genetic differentiation, isolation of population, and extinction-recolonization events. Moreover, it deals with the variety of causes for genetic differentiation like habitat fragmentation and destruction, genetic drift, effective population size changes, or sex-biased dispersal to name just a few. The field of population genetics rapidly progressed through the last two decades. This is partly due to the improvements in molecular biology. The development of the polymerase chain reaction (PCR; SAIKI et al., 1988) and the following discovery of highly polymorphic genetic markers like AFLPs (VOS et al., 1995; MÜLLER & WOLFENBARGER, 1998; BLEARS et al., 1998) and microsatellites (SCHLÖTTERER & TAUTZ, 1992) enabled scientists to study genetic polymorphisms below the species level. Simultaneously, progresses in the theoretical background (WEIR & COCKERHAM, 1984; WEIR, 1990; SLATKIN, 1995; ROUSSET, 1997; DYER & NASON, 2004) and the development of freely available software packages (RAYMOND & ROUSSET, 1995; PRITCHARD et al., 2000; DYER & NASON, 2004; PIRY et al., 2004; EXCOFFIER et al., 2005; to name just a few) allow addressing a variety of questions. Besides these technical improvements, another aspect moved population genetics into the focus of scientific research. The increasing awareness for anthropologenic changes of the environment in public and politics supported this flowering field of research and vice versa (AVISE, 1989; BROOKS et al., 1992). Therefore, population genetics plays a major role to examine the consequences of anthropological influences on natural systems. Knowledge of population genetic data provides the basis for wildlife management and conservation genetic projects. A series of comparable studies may lead to an increasing knowledge about general patterns of population dynamics and draw the attention to dissimilarities in different systems. 1 General Introduction 14 Therefore, a population genetic approach to analyze two dissimilar faunal elements in Southern Arabia is of particular interest to acquire population genetic data from a remote area, where hardly any published data can be found. Additionally, the project represents a logical consequence of the research of Prof. Naumann, who worked intensively on the morphology, ecology and distribution of R. simonyi. Similar, H. savignyi has been studied in detail by researchers. However, genetic population genetic data for both species have been lacking so far. The selection of a moth and a frog concurrently allows the examination of the consequences of habitat fragmentation on two different systems. 1.2 Study area The Arabian Peninsula has an interesting geological history which started some 60 million years ago with the seperation of the Arabian landmass from the African plate along the line of the Red Sea and the Gulf of Aden by tectonic drift effects (THOMPSON, 2000). By the same time, the Arabian plate began to move north-eastwards and collided with the Eurasian plate about 15 million years ago. The collision resulted in the formation of the Zagros Mountain in Iran and other mountain systems i
Related Search
Similar documents
View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks