Aπαντήσεις 5ου επαναληπτικού διαγωνίσματος

Description
1. thanasiskopadis.blogspot.com ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΘΕΜΑ Α A1. Θεωρία Σχολικού Βιβλίου…

Please download to get full document.

View again

of 8
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information
Category:

Education

Publish on:

Views: 7 | Pages: 8

Extension: PDF | Download: 0

Share
Transcript
  • 1. thanasiskopadis.blogspot.com ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΘΕΜΑ Α A1. Θεωρία Σχολικού Βιβλίου Α2. Ορισμός Σχολικού Βιβλίου Α3. Αφού η ′f είναι γνησίως αύξουσα η f θα είναι κυρτή, επομένως η εφαπτομένη της fC στο σημείο με 0 1=x θα βρίσκεται κάτω από την fC με εξαίρεση το σημείο επαφής. Δηλαδή, για κάθε ∈ℝx θα ισχύει ότι ( ) 2 1≥ −f x x και η ισότητα ισχύει μόνο για 1=x . Οπότε η ανισότητα ( ) 2 1> −f x x ισχύει για κάθε { }1∈ −ℝx . Σωστή απάντηση το β) Α4. Λ , Σ , Σ , Σ , Λ ΘΕΜΑ B B1. Είναι Α =ℝg και [ )1,= − +∞hA Θα πρέπει 1 1 ( ) ( ) ∈  ≥ −  ⇔ ⇔ ≥ −  ∈ ∈  ℝ h g x A x x h x A h x Για 1≥ −x , έχουμε: ( ) ( )( ) 1+ = = x f x g h x e B2. Για 1> −x , έχουμε: ( ) ( )1 11 1 1 1 2 1 2 1 + + ′ = ⋅ + − + ⋅ + + x x F x e x e x x α α 1 1 1 1 2 22 1 2 1 + + + + ⋅ ⋅ ⋅ ⋅ = − + = + + x x x x e e e e x x α α α α Θα πρέπει ( ) ( ) 11 0 1 1 2 2 2 ++ ≠ +⋅ ′ = ⇔ = ⇔ = ⇔ = xx e xe a F x f x e a α
  • 2. thanasiskopadis.blogspot.com Για 2=a , είναι ( ) ( )1 2 1 1+ = + −x F x e x Εξετάζουμε αν και στο 0 1=−x η F είναι αρχική της f Είναι: ( ) ( )1 2 1 1 2 1 1 2( ) ( 1) 1 lim lim 1 1 + + + →− →− + − +− − ′ − = = + + x x x e xF x F F x x ( ) ( ) 0 1 0 2 . . .1 , 0 0 0 0 2 1 2 2 lim lim lim 1 1 2+ + + + + + = →− → → → → − + = = = = = − y yx y y D L Hx y y y y e y ye e f y y Άρα για 2=a η F είναι αρχική της συνάρτησης f για κάθε 1≥ −x Β3. Α τρόπος ( ) ( ) 0 0 11 (0) ( 1) 2−− Ι = =   = − − = ∫ f x dx F x F F B τρόπος ( ) 0 0 1 1 1 + − − Ι = =∫ ∫ x f x dx e dx Θέτουμε 2 1 1+ = ⇔ + =x u x u , άρα 2=dx udu Για 1, 0= − =x u και για 0, 1= =x u Οπότε 11 1 1 00 00 2 2 2 2 2 2   Ι = = − = − =   ∫ ∫ u u u u ue du ue e du e e B4. Για 1> −x , έχουμε: ( ) 1 1 0 2 1 + ′ = ⋅ > + x f x e x για κάθε 1> −x και επειδή η f είναι συνεχής στο 0 1=−x θα είναι γνησίως αύξουσα στο [ )1,− +∞ Οπότε η f είναι 1-1 συνάρτηση, επομένως αντιστρέφεται. Είναι: ( ) 0 1 1 2 1 2 ( ) 1 ln ln 1 ln 1 > ≥− + − = ⇔ = ⇔ + = ⇔ = − ⇔ = − y y x y f x y e x y x y f y y Άρα ( )1 2 ln 1, 1− = − ≥f x x x
  • 3. thanasiskopadis.blogspot.com ΘΕΜΑ Γ Γ1. Για 0>x είναι 1 1 0> ⇔ − >x x e e , άρα ( ) 1 0 0 − ′> ⇔ > x e f x x Για 0<x είναι 1 1 0< ⇔ − <x x e e , άρα ( ) 1 0 0 − ′> ⇔ > x e f x x Για 0=x είναι ( )0 1 0′ = >f Άρα ( ) 0′ >f x για κάθε ∈ℝx , οπότε η f είναι γνησίως αύξουσα Γ2. α) Είναι ( ) ( ) 0 0 0 0 20 0 0 . . . 0 . . . 0 1 10 1 1 1 lim lim lim lim lim 2 2 2→ → → → → − −′ ′− − − − = = = = = x x x x x x x D L H x D L H x e f x f e x e ex x x x x Άρα η f είναι δύο φορές παραγωγίσιμη στο 0 0=x με ( ) 1 0 2 ′′ =f β) Για 0≠x είναι ( ) ( ) ( )( ) 2 2 1 1 1 ′ ′− − − − + ′′ = = x x x xe x e x xe e f x x x Θεωρούμε τη συνάρτηση ( ) 1,= − + ∈ℝx x g x xe e x Είναι ( )′ = + − =x x x x g x xe e e xe Κατασκευάζουμε τον παρακάτω πίνακα μονοτονίας: x − ∞ 0 +∞ ( )′g x - O + ( )g x 2 1, Παρατηρούμε ότι η g παρουσιάζει στο 0 0=x ελάχιστο, άρα θα ισχύει ότι ( ) ( ) ( )0 0≥ ⇔ ≥g x g g x
  • 4. thanasiskopadis.blogspot.com Οπότε ( ) 0′′ >f x για κάθε 0≠x Επιπλέον ( ) 1 0 0 2 ′′ = >f , επομένως ( ) 0′′ >f x για κάθε ∈ℝx , δηλαδή η f είναι κυρτή συνάρτηση. Γ3. Η εφαπτομένη της fC στο σημείο ( )( )1, 1Μ f έχει εξίσωση: ( ) ( )( )1 1 1′− = −y f f x , δηλαδή ( )1 1= − +y e x Το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f , την εφαπτομένη της στο σημείο ( )( )1, 1Μ f και την ευθεία 0=x είναι: ( ) ( ) 1 0 1 1Ε = − − −∫ f x e x dx Όμως δείξαμε ότι η f είναι κυρτή, άρα η fC θα βρίσκεται πάνω από την εφαπτομένη της στο σημείο Μ με εξαίρεση το σημείο επαφής. Δηλαδή θα ισχύει ( ) ( )1 1≥ − +f x e x Άρα ( ) ( )( ) ( ) ( )( ) 1 1 1 0 0 0 1 1 1 1Ε = − − − = − − + =∫ ∫ ∫f x e x dx f x dx e x dx ( ) ( ) ( ) ( ) ( ) 12 1 11 00 0 0 1 1 1 1 2 2    ′ ′− − + =   − − − + =        ∫ ∫ x x f x dx e x xf x xf x dx e ( ) ( ) ( ) 1 1 00 1 1 1 3 1 1 1 1 2 2 2 2 2 2 2 −  − − − − = − − − − = − − − − = ∫ x xe e e e f e dx e e x e τ.μ. Γ4. Από Γ3. έχουμε ότι: ( ) ( )1 1≥ − +f x e x Είναι ( )( )lim 1 1 →+∞ − + = +∞ x e x , οπότε και ( )lim →+∞ = +∞ x f x Επίσης: ( ) ( ) ( ) ( ) 2 . . . ( ) 1 1 1 1 lim lim lim 2017 2 2 +∞ +∞ →+∞ →+∞ →+∞ ′+ + + + + − = = = + x x D L H x x x f x f x xf x f x e x x x ( ) ( ) . . . . . . 1 1 lim lim lim lim 2 2 2 2 +∞ +∞ +∞ +∞ →+∞ →+∞ →+∞ →+∞ − +′+ + − + = = = = x x x x x x x D L H x x x D L H e ef x e f x e e xex x x
  • 5. thanasiskopadis.blogspot.com 2 lim 2→+∞ + = +∞ x x x e xe ΘΕΜΑ Δ Δ1. Θέτουμε ( ) 3 0 =∫ f t dt κ , οπότε η αρχική σχέση για 0>x γίνεται: ( ) ( ) ( ) ( ) ( )0 2 2 1 1 1 9 9 9 ≠ ′ ′′ −    ′ − = ⇔ = ⇔ =       x xf x f x f x xf x f x x x x x κ κ κ Με εφαρμογή του Πορίσματος των Συνεπειών του Θ.Μ.Τ. ισοδύναμα έχουμε: ( ) 1 9 = + f x x c x κ , ∈ℝc Για 1=x προκύπτει ότι ( ) 1 1 1 1 1 1 9 9 9 = + ⇔ = + ⇔ = −f c c cκ κ κ Επομένως ( ) ( ) 21 1 1 1 1 1 9 9 9 9   = + − ⇔ = + −    f x x f x x x x κ κ κ κ (1) Οπότε ( ) 3 33 2 3 3 2 0 0 0 0 1 1 1 1 1 1 9 9 9 3 9 2         = + − ⇔ = + − ⇔                 ∫ ∫ x x f x dx x x dxκ κ κ κ κ 1 1 9 9 9 1 9 9 9 2 2 2   = ⋅ + − ⇔ = + − ⇔ =    κ κ κ κ κ κ κ Άρα ( ) 3 0 9=∫ f t dt Από (1) προκύπτει ότι ( ) 2 , 0= >f x x x Για 0=x , επειδή η f είναι συνεχής ως παραγωγίσιμη, θα ισχύει ότι: ( ) ( ) 2 0 0 0 lim lim 0 → → = = = x x f f x x Άρα ( ) 2 , 0= ≥f x x x
  • 6. thanasiskopadis.blogspot.com Δ2. α) Για 0>x έχουμε: ( ) ( ) 2ln 2ln ln −′′ = − ⋅ = x g x x x x και ( ) 2 2 1 2 2ln ln 1 2 − + − ′′ = = x x xxg x x x Κατασκευάζουμε τον παρακάτω πίνακα κυρτότητας: x 0 e +∞ ( )′′g x – O + ( )g x 4 3 Οπότε η g είναι κοίλη στο ( ]0,e και κυρτή στο [ ),+∞e , ενώ το ( ), 1Α −e είναι σημείο καμπής της β) Εφαρμόζουμε Θ.Μ.Τ. για την g στο διάστημα [ ],e x ● H g είναι συνεχής στο [ ],e x ● H g είναι παραγωγίσιμη στο ( ),e x Άρα θα υπάρχει ( ),∈ e xξ τέτοιο, ώστε ( ) ( ) ( ) 2 2 ln 1 ln 1− − + − ′ = = = − − − − g x g e x x g x e x e x e ξ (1) Είναι [ ) ( ) ( ) 2 2, (1) ln 1 2ln ln 1 2ln′ +∞ − − ′ ′< ⇔ < ⇔− < − ⇔ > ⇔ − − րg e x x x x x g g x x e x x e x ξ ξ ( ) ( )2 ln 1 2 ln− > −x x x e x , για κάθε >x e Δ3. Αφού Α∈ fC θα είναι ( )2 0 0,Α x x και αφού Β∈ gC θα είναι ( )2 0 0, ln−B x x , εφόσον γνωρίζουμε ότι τα σημεία αυτά έχουν την ίδια τετμημένη 0x .
  • 7. thanasiskopadis.blogspot.com Η απόσταση των Α,Β είναι: ( ) ( ) ( ) 22 2 2 2 2 2 2 0 0 0 0 0 0 0 0ln ln lnΑΒ = − + + = + = +x x x x x x x x Θεωρούμε τη συνάρτηση ( ) 2 2 ln , 0= + >h x x x x Θέλουμε να αποδείξουμε ότι υπάρχει μοναδικό 0 1 ,1   ∈    x e τέτοιο, ώστε η h να παρουσιάζει ελάχιστο. Είναι ( ) ln 2 2′ = + x h x x x ● H ′h είναι συνεχής στο 1 ,1     e ● 1 ln 1 2 2 2 2 0 1  ′ = + = − <    eh e e e e e ( ) ln1 1 2 2 2 0 1 ′ = + = >h Άρα από Θ.Bolzano υπάρχει ένα τουλάχιστον 0 1 ,1   ∈    x e τέτοιο, ώστε ( )0 0′ =h x Επιπλέον ( ) 2 2 2 1 ln 2 2 ln 2 2 0 − + − ′′ = + = > x x x h x x x για κάθε 1 ,1   ∈    x e (αφού τότε 2 ln 0 ln 0 2 2 ln 0< ⇔− > ⇔ + − >x x x x ), άρα η συνάρτηση ′h είναι γνησίως αύξουσα στο διάστημα 1 ,1     e , επομένως το 0x είναι μοναδικό. Για ( ) ( ) ( )0 0 1 0 ′ ′ ′ ′< < ⇔ < ⇔ < րh x x h x h x h x e Για ( ) ( ) ( )0 01 0 ′ ′ ′ ′< < ⇔ > ⇔ > րh x x h x h x h x Κατασκευάζουμε τον παρακάτω πίνακα μονοτονίας: x 1/ e 0x 1 ( )′h x - O + ( )h x 2 1,
  • 8. thanasiskopadis.blogspot.com Οπότε υπάρχει μοναδικό 0 1 ,1   ∈    x e τέτοιο, ώστε η απόσταση των σημείων Α και Β να γίνεται ελάχιστη. Δ4. Είναι ( )2 4 2 2 2 2 2 1 1 1 lim lim lim →+∞ →+∞ →+∞            ⋅ = ⋅ = ⋅                     x x x f x x x x x x x x x xν ν ν ηµ ηµ ηµ Είναι 2 1 2 2 , 0 0 1 lim lim 1 = →+∞ →+∞ → →    = =      y x x x y y y x x y ηµ ηµ Επίσης για το 2 lim →+∞      x x xν διακρίνουμε τις περιπτώσεις: ● Αν 2<ν , τότε 2 lim →+∞   =+∞   x x xν , οπότε και ( )2 2 1 lim →+∞    ⋅ = +∞      x f x x xν ηµ ● Αν 2=ν , τότε 2 lim 1 →+∞   =   x x xν , οπότε και ( )2 2 1 lim 1 →+∞    ⋅ =      x f x x xν ηµ ● Αν 2>ν , τότε 2 lim 0 →+∞   =   x x xν , οπότε και ( )2 2 1 lim 0 →+∞    ⋅ =      x f x x xν ηµ
  • We Need Your Support
    Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

    Thanks to everyone for your continued support.

    No, Thanks